今年兩會,全國人大代表、科大訊飛董事長劉慶峰建議,在2017年&&的《新一代人工智能發展規劃》的基礎上,瞄準我國通用人工智能發展中需要重點補上的短板進行設計,圍繞自主可控算力生態構建、高質量數據開放共享、科學的評測標準制定、源頭技術前瞻研發、人才培養、法律制定和倫理人文等維度,系統性制定國家通用人工智能發展規劃,由國家高位推動規劃的制定和落地,在行業應用和價值創造上打造我國的比較優勢。他&&,國家在制定規劃的同時,應該加快推動通用人工智能的相關工作,並提出九點建議:
第一,建議發揮舉國體制優勢,加大並保持對通用大模型底座“主戰場”的持續投入。建議以專項的形式從算力、數據、算法上在未來5年內持續支持我國通用大模型的研發攻關;建議支持有條件的地方政府,以專項債的形式支持通用和行業大模型研發以及應用生態發展所需的算力基礎設施建設;建議制訂相關政策,推動工業和民生等領域的大模型應用,從而讓“底座大模型+行業應用”形成相互促進的良好局面。
第二,建議加快形成圍繞國産大模型的自主可控産業生態。支持國産大模型向開發者開放,開展大模型評測體系和開源社區建設,降低研發和使用成本。以“人工智能+”推動我國自主可控的大模型産業生態蓬勃發展。
第三,建議推動國家級高質量訓練數據開放和共享。加大政府和市場協同,合理解決知識産權問題,構建包括國家公共數據資源、高質量電子圖書、高質量音視頻、多渠道行業應用數據及互聯網開源數據資源等多源多模態的國家級數據資源匯聚&&,支持國家實驗室、全國重點實驗室、國家人工智能開放創新&&、行業領軍企業等國家戰略科技力量以揭榜挂帥形式優先、低成本使用。
第四,建議&&更加客觀、公正、可信的評測方法,加快大模型在行業領域的應用落地。在行業應用方面,建議首批可以加快開發面向金融、工業、汽車、文旅、政務、教育、醫療等關鍵行業的應用場景,加快打造標杆示範,在成效驗證後向全國規模化推廣。
第五,建議堅持源頭核心技術系統性創新,在戰略性、前瞻性的基礎研究領域做好布局。布局投入大模型的寬基礎研究,在大模型能力涌現機理、大模型可信訓練推理、強化學習技術、自主學習技術等方面形成突破。建議加快腦科學與類腦智能、量子計算等領域與人工智能關鍵研究的協同攻關,形成交叉學科的突破。建議推動大模型與科學研究的深度結合,打造AI for Science的科研新範式,研究基於科學數據的AI建模和科學知識提取技術,助力科研人員更高效地進行科學研究和探索。
第六,建議加快推廣大模型賦能全學段,以全新機制加快探索我國人工智能拔尖創新人才培養。加強人工智能一級學科建設,聯合頭部企業打造一批人工智能人才産教融合培養基地,打造優秀人才專項遴選機制和通道等。
第七,建議研究通用人工智能時代人才能力素質模型和培養方案,加快應用型人才培養。特別是加快用通用人工智能賦能軟體代碼、語言學習、藝術創意等應用型人才的培養,助力我國軟體行業和數字經濟發展。
第八,建議加速通用人工智能技術相關的法律法規制定與審議。圍繞大模型的數據安全、隱私洩露、可靠性、知識産權等幾大關鍵方面制定法律法規,提升通用人工智能技術可靠性與規範性。同時,完善向社會開放的大模型的准入和運行規則,明確責任分配與問責機制,並明確大模型知識産權與保護方式。
第九,建議設立軟課題進行通用人工智能相關的倫理人文研究。